

<u>Thermal Power Plant-Maihar Cement works</u> (Ultratech cement-Aditya Birla Group)

S. No.	Name	Designation	Email	Mobile No.
1	Narendra Kumar Vishnawat	Deputy Manger	narendra.vishnawat@adityabirla.com	9414630361
2	Dilip S Kumar	Astt Manger	dilip.s.kumar@adityabirla.com	8469681939
3	Ashish Soni	Astt Manager	ashish.soni@adityabirla.com	8058500754

Welcome to Cll

ADITYA BIRLA

UltraTech

23nd National Award for Excellence in Energy Management 2022

About the Organisation

UltraTech Cement-Maihar Cement Works

- 2X15.7 MW Captive Power Plant with AFBC Boiler technology.
- Year of Commissioning- TPP-01 1996 and TPP-02 2006
- 3 MTPA capacity Cement plant & adapted integrated management system .
- ISO 50001,45001and 9001 certified & have framed energy management policy.
- Dedicated Energy conservation team.

About the Organisation

Boiler-2 Nos Make-CVPL Technology-2 Nos AFBC Steam Flow-70 TP Boiler outlet Pressure-60 kgf/cm2 Turbine-2 Nos Make- 1)BHEL 2)SHIN NIPPON Technology-Condensate Steam Flow-70 TPH TG Inlet Temperature-505

Energy Consumption Overview

	TPP Performance FY,21-22											
Sr No	Performance Parameter	UOM	TPP-1	TPP-2	Total							
1	Generation	Lacs Kwh	1001.22	1157.71	2158.93							
2	PLF	%	93.20	93.84	93.54							
3	Auxiliary Power Cons		6.24	6.38	6.32							
4	Plant Availability	%	96.31	98.32	97.18							
5	Plant Heat Rate	Kcal/Kwh	3237	3248	3242							
6	Boiler Efficiency	%	84.1	83.8	83.9							
7	DM Water Consumption	Litre/Kwh	0.10	0.085	0.09							
8	Raw Water Consumption	Litre/Kwh	0.57	0.48	0.52							

Key Performance Indicators

Benchmarking with Group Units

Heat Rate & APC Roadmap

Energy Savings Projects Planned (2022-23)

		Sa	aving Achieve				
SN	Energy Saving Projects	Electrical Energy (Million KWH)	Thermal Energy(Rs. (Million)(MillionMillion)Kcal/Year)		Investment (Rs. Million)	Pay back Year	
1	Replacement of New energy efficient FD fan with existing FD Fan	0.22	0	1.1	2.0	2.43	
2	Replacement of New energy efficient Boiler Feed Pump with existing Boiler Feed Pump	0.25	0	1.4	5.0	2.1	
3	Replacement of New energy efficient ACC Fan Blade with existing ACC Fan Blade	0.17	1338	3.5	4.8	2.0	
4	Fanless Cooling Tower	0.6	0	0.2	5.0	2.0	
5	VAM System for replacement of existing AC system	0.29	0	1.8	2.0	3.08	

Energy Savings Projects Implemented

Year	No of Energy Saving Project	Investment (INR Million)	Electrical Energy (Million Kwh)	Thermal Energy (Million Kcal/Year)	Saving (INR Million)
FY 2019-20	7	0.8	1.12	5526	15.4
FY 2020-21	10	7.54	1.54	4432	12.07
FY 2021-22	27	1121	5.8	39373	76.18

Waste Heat Recovery Innovative Projects-1

Problem Statements

Preheater and cooler exhaust air account for more than 35.5% of that heat loss.

High TPP power cost due to high fuel prices (High Transportation cost- Location Constraint)

Installed Two sets of PH boilers locates at Pre heater exhaust gas down comers and receives waste heat gases of 3, 12,500 MN3/Hr with 320 Deg. C.

Installed One set of AQC boiler locates at clinker cooler mid tap out let and receives cooler vent gases of 1,45,833 MN3/Hr with 500 Deg.

The Superheated Steam generated in the PH & AQC Boiler is used in the Steam Turbine Generator where in Power is generated 10 MW

Saving by WHRS Generation-**Rs 4.74 Crore** Targeted Saving in FY,23**-35 Crore**

Innovative Projects-2

Theme-Interconnection Service air compressor for Both TPPs.

Problem

- High Power consumption of Service air compressor.
- ✤ Air flow for conveying the ash was higher than design.
- Conveying system was running on probe mode resulting higher running hours of compressor.

Solution

- Calculate actual air flow requirement for conveying ash system.
- Operate all conveying system through draft level sensor.
- Interconnect both TPPs service air line to operate both TPPs conveying system from single compressor.

Benefit

- Saving in Power Consumption-33 Lacs Kwh/Annum
- Saving in Cost-Rs 17 Lacs/Annum

Innovative Projects-3

Saving From Energy Projects Implemented

Total Investment in Encon Project Rs 121 Crore **Total Saving in Encon Project**

In FY,22-Rs 7.6 Crore

Targeted Saving in FY23- Rs 28 Crore

Utilization of renewable energy sources

Year	Technology (Electrical)	Type of Energy	Onsite/Offsi te	Installed Capacity (MW)	Generation (Million kWh)	% of overall electrical energy
FY 2020-21	Solar-PV	Solar	Onsite	8.75 MW AC	0.651	0.24
FY 2021-22	Solar-PV	Solar	Onsite	8.75 MW AC	13.5	4.84

Fly Ash generation & Utilisation

100 % fly ash utilization in cement plant

Ash unloading through Telescopies spout.

Fly Ash Generation (MT)

Environment Management- Emission

- Reduction in Coal consumption from energy saving, solar and WHRS generation in FY,22- 20433 MT
- Reduction CO2 Emission in FY,22- 19260 MT
- Reduction CO2 Emission in FY,22- 5 % (From FY,21)
- Targeted Reduction CO2 Emission in FY,23-56166 MT
- Targeted Reduction CO2 Emission in FY,23-18 % (From FY,22)

Environment Management-Water

Dump system refurbishment done Saving in Raw water-10230 KL/Year

Reuse the boiler blow down water as cooling tower make up by storage in dedicated tank, Saving in Raw water-**1230 KL/Year.**

DMF backwash, backwash water was being collected in dedicated tank and again re use it, Saving in Raw water-748 KL/Year.

3

Earlier we are using raw water for bed ash quenching. Now construct a dedicated pit and collect Cooling tower blowdown water in it and this water used for bed ash quenching Saving in Raw water-9352 KL/Year.

Total Raw water saving by taken various saving initives in FY,22-69086 KL

Environment Management-Water

Parameters	UOM	2019-20	2020-21	2021-22
DM Water Consumption	%	9.40	9.35	8.82
Raw Water consumption	M3/Mwh	0.55	0.54	0.52

Fly Ash generation & Utilisation

Parameters	UOM	2019-20	2020-21	2021-22
Ash Generated	Tons	69095	53400	55549
Ash Utilization	%	100	100	100
Ash Utilized in manufacturing of cement/concrete –other similar products	%	100	100	100
Ash Utilized in Fly Ash Bricks	%	0	0	0
Ash Utilized in Mine filling	%	0	0	0
Ash Utilized for Roads pavements	%	0	0	0
Expenditure on Ash Utilization (annual)	INR (Lakhs)	0	0	0

Best Practices – Daily Monitoring

Continuous monitoring of losses due to various performance parameters

Daily online monitoring of auxiliary power by using Exact space

Description	Gain/Loss	Impact	Impact	B-1		В	-2		3-3	Unit-1 : Boiler Losses Fault Tree	10/27/2020 4:
		B1&2	B3	Actual/Target	Impact	Actual/Target	Impact	Actual/Target	Impact		
20°C Increase in Comb Air Temp	Efficiency Increase by 1%	35	80	221.10 210.00	19.36	221.81 210.00	0.03	190.08 200.00	40.06	Boiler Losses	
6°C Increase in ECO Inlet Temp	Efficiency Increase by 1%	35	80	190.82 194.00	18.40	188.41 194.00	32.47	185.23 204.00	246.96	Unburnt Carbon in Fly Ash	FWTemp. at Eco I/L
21°C Decrease FG APH OL Temp	Efficiency Increase by 1%	35	80	157.41 150.00	12.30	157.41 150.00	17.61	143.20 150.00	25.92	(Target: <7 %)	> 190°C) Dxygen at APH I/L (Target: 3-4.5%)
										Total Moisture Content in Coal 12.3	
Description	Gain/Loss	TG1	pact & TG2	Actual/Target	TG-1	Impact	Actual/	TG-2 Target	Impact	(Target: <30%)	VATER FLOW-STM FLOW (< 3 TPH)
0.01 Vacuum in Turbine	13.29 kacl/kwh	:	20	-0.00 -0.89		1772.57	-0.90	-0.89	24.41	(Target: >3000) 0 0 157.41 160.54	G Temp.APH O/L (120-160°C)
5°C Decrease in	13.29 karl/kwh Loss				_					Main Steam Enthalpy (KCal/Kg) 809.34 808.91 39.08 38.93	Main Steam Flow
Main Steam Temp	in Heat Rate		28	412.73 494.0	0	477.52	499.65 4	94.00	9.24	Main Steam Press 86 69 86 75 498.45 496.58	Main Steam Temp. (485-525 °C)
Total Impact		2538.99)							(Kg/Cm ²)	

Best Practices – Daily Monitoring

Continuous monitoring of losses due to various performance parameters

Deg C KG/CM2

Kg/cm2 Deg C KG/CM2

KG/CM2 Deg C Deg C Deg C

KG/CM2 Deg C

KG/CM2 Deg C

	III	r -2 Pr	KFORMA	INCE PARAMETER		
PARAMETER	TAG NO.	DESIGNED	MEASURED VALUE	PARAMETER	TAG NO.	DESIGNE
BOILER FEED WATER ECO INLET TEMP	NTT-101	203	105,8 Deg C	TURBINE STEAM TEMP	NTE EIAI	100
FEED WATER FLOW	CALC-NFT-101	70.7	45,1 TPH	STEAM PRESSURE	NPT-5101	490
STEAM TEMP	NTT-203	505(+/-5)	499.0 Deg C	EXHAUST PRESSURE	NPT-5107A	
STEAM PRESSURE	NPT-202	63	59.7 KG/CN	2 EXHAUST TEMPERATURE	NTE-5102	57.4
STEAM FLOW	CALC-NFT-201	70	47.4 трн	WHEEL CHAMBER PRESSURE	NPT-5111	
02 IN FLUE GAS	NEOX		7.6%	HP HEATED		
AIR HEATER				STEAM INLET PRESSURE	NPT-5122	16 900
FLUE GAS INLET TEMP	NTT-404	240-250	202.8 Deg C	STEAM INLET TEMPERATURE	NTE-5122	337.1
FLUE GAS OUTLET TEMP	NTT-405	140	(17.7 Deg C	FEED WATER INLET TEMP	NRTD-411	150.8
AIR OUTLET TEMP	NTT-307	160	1 46,5 Deg C	FEED WATER OUTLET TEMP	NTT-101	203
ECONOMISER				DRAIN WATER TEMP		158.2
FLUE GAS INLET TEMP	NTT-403	390-400	400.1 Deg C	LP HEATER		
FLUE GAS OUTLET TEMP	NTT-404	240-250	202.8 Deg C	STEAM INLET PRESSURE	NPT-5142	0.6833
FEED WATER INLET TEMP	NTT-101	203	185.ê Deg C	STEAM INLET TEMPERATURE	NTE-5142	110
FEED WATER OUTLET TEMP	NTT-102	250	2 SE, 4 Deg C	COND. WATER INLET TEMP		57.6
DEAERATOR			1	COND. WATER OUTLET TEMP		107.3
STEAM INLET PRESSURE	NPT-5132	3.8	3,1 KG/CM	2 DRAIN WATER TEMP		112.7
STEAM INLET TEMPERATURE	NTE-5132	286.9	224.7 Deg C	MAIN STEAM LINE PRESS. DIFF	AIC467	
DERTR WATER OUTLET TEMP	NTE-5152-SPAS	148.9	138,4 Deg C	MAIN STEAM LINE TEMP. DIFF	AIC453	

TDD 1 DEDEODIC

Date	Generati on (Kwh)	Total Aux. Power(Kwh)	AUX %	PLF%	BFP-1 Power	BFP-2 Power	Total BFP Power	FD FAN	ACC	PA FAN-2	PA FAN	CONV. COMPRE SSOR-6	Conv. Compre Ssor-1	CONV COMPR SSOR-2
15-May-22	352000	21965	6.24%	93%	5340	0	5340	4740	2080	1756	1756	0	0	1227
16-May-22	362000	22170	6.12%	96%	5530	0	5530	5670	2100	1718	1718	0	0	1200
17-May-22	364000	22270	6.12%	97%	5160	0	5160	4940	2100	1737	1737	0	0	1200
18-May-22	362000	22515	6.22%	96%	5550	0	5550	5340	2220	1750	1750	0	0	1255
19-May-22	360000	22485	6.25%	96%	5540	0	5540	5320	2220	1692	1692	0	0	1203
20-May-22	366000	22645	6.19%	97%	5500	0	5500	5220	2320	1748	1748	0	0	1252
21-May-22	344000	21895	6.36%	91%	5350	0	5350	5200	2020	1762	1762	0	0	1208
22-May-22	316000	21885	6.93%	84%	5450	0	5450	5110	1920	1785	1785	0	0	1237
23-May-22	272000	19705	7.24%	72%	5000	0	5000	4900	1020	1846	1846	0	0	124/
24-May-22	292000	19985	6.84%	77%	5120	0	5120	4940	820	1777	1777	0	0	10/6
25-May-22	328000	21055	6.42%	87%	5230	0	5230	5240	720	1742	17/7	0	0	0
26-May-22	268000	17065	6.37%	71%	4800	0	4800	4500	220	1771	1742	0	0	0
27-May-22	220000	18955	8.62%	58%	4920	0	4920	4740	510	1//1	1//1	0	0	0
28-May-22	246000	19145	7.78%	65%	4860	0	4860	4680	720	1021	1821	0	0	0
29-May-22	296000	19815	6.69%	79%	4950	0	4950	4840	000	1010	1836	0	0	0
1	Datewise	Data Entry	y Day v	vise report	()	1500	4040	000	1819	1819	0	0	0

TPP Daily review meeting

- Well Established energy management cell headed by DH-TPP.
- Daily monitoring of Heat rate and Aux. power deviation report.
- Analysis of equipment performance for deviation.
- Identification of energy conservation scope.
- Theme base suggestions/Kaizens scheme under "Energy Saving ".
- Feasibility study of suggestions & submit proposal for sanction.
- Preparation of detail action plan.
- Benefits analysis after project implementation.

Criteria For Energy Savings Projects Implementation

- Opportunity identification
- Energy mapping
- Bench marking
- Lost cost matrix

- ✤ Suggestion
- Idea generation
- Idea screening
- Feasibility study

 Team formation and allocation of project team

Project
Execution
& review
of
progress

Result
 Achieved

Reward &
 Recogniti

on

3371 Kcal/kwh

APC -7.77 %

- **1** Installation Energy Efficient FD fan with existing FD Fan.
- **2** Installation of Energy Efficient BFP with Existing BFP
- **3** Installation of Energy Efficient ACC fan blade with Existing ACC fan blade.
- **4** HP and LP Heater Cleaning work for better heat transfer.
- **5** Replacement of Existing AC with VAM system
- **6** Replacement of Existing ACC Tube bundle with single row tube bundle for reduction in PHR
- 7 Fanless Cooling tower for water cooled condenser for improve vacuum for reduction in PHR

Here We were Station Heat Rate 3242 Kcal/KWh APC- 6.32%

Here We Are

Here We will be

Station Heat Rate 3210 Kcal/Kwh APC- 5.80 %

Learnings from CII energy awards

1)Installation of online cleaning system in condenser:

We have installed online ball cleaning system in condenser-2. We took trial with different ball sizes.

2) ACC Tube bundle in house cleaning in every two months.

3) Daily monitoring of process parameter with graphical method to improve KPI.

4) Daily monitoring of process parameter with graphical method to improve KPI.

Kaizen Suggestions implemented-281 Nos

The less you burn, the more you earn.....

Narendra Vishnawat Deputy Manager Maihar Cement works UltraTech Cement